
Batch

Run MATLAB script or function on worker

Syntax

j = batch('aScript')
j = batch(myCluster,'aScript')
j = batch(fcn,N,{x1, ..., xn})
j = batch(myCluster,fcn,N,{x1,...,xn})
j = batch(...,'p1',v1,'p2',v2,...)

Arguments

Argument Description
j The batch job object.
'aScript' The script of MATLAB code to be evaluated by

the worker.
myCluster Cluster object representing cluster compute

resources.
fcn Function handle or string of function name to be

evaluated by the worker.
N The number of output arguments from the

evaluated function.
{x1, ..., xn} Cell array of input arguments to the function.
p1, p2 Object properties or other arguments to control

job behavior.
v1, v2 Initial values for corresponding object properties

or arguments.

Description

j = batch('aScript') runs the script code of the file aScript.m on a worker in the cluster specified
by the default cluster profile. (Note: Do not include the .m file extension with the script name
argument.) The function returns j, a handle to the job object that runs the script. The script file
aScript.m is copied to the worker.

j = batch(myCluster,'aScript') is identical to batch('aScript') except that the script runs on a
worker according to the cluster identified by the cluster object myCluster.

j = batch(fcn,N,{x1, ..., xn}) runs the function specified by a function handle or function name,
fcn, on a worker in the cluster identified by the default cluster profile. The function returns j, a
handle to the job object that runs the function. The function is evaluated with the given

arguments, x1,...,xn, returning N output arguments. The function file for fcn is copied to the
worker. (Do not include the .m file extension with the function name argument.)

j = batch(myCluster,fcn,N,{x1,...,xn}) is identical to batch(fcn,N,{x1,...,xn}) except that the
function runs on a worker in the cluster identified by the cluster object myCluster.

j = batch(...,'p1',v1,'p2',v2,...) allows additional parameter-value pairs that modify the behavior
of the job. These parameters support batch for functions and scripts, unless otherwise
indicated. The supported parameters are:

• 'Workspace' — A 1-by-1 struct to define the workspace on the worker just before the
script is called. The field names of the struct define the names of the variables, and the
field values are assigned to the workspace variables. By default this parameter has a
field for every variable in the current workspace where batch is executed. This
parameter supports only the running of scripts.

• 'Profile' — A single string that is the name of a cluster profile to use to identify the
cluster. If this option is omitted, the default profile is used to identify the cluster and is
applied to the job and task properties.

• 'AdditionalPaths' — A string or cell array of strings that defines paths to be added to the
MATLAB® search path of the workers before the script or function executes. The default
search path might not be the same on the workers as it is on the client; the path
difference could be the result of different current working folders (pwd), platforms, or
network file system access. The 'AdditionalPaths' property can assure that workers are
looking in the correct locations for necessary code files, data files, model files, etc.

• 'AttachedFiles' — A string or cell array of strings. Each string in the list identifies either a
file or a folder, which gets transferred to the worker.

• 'AutoAttachFiles' — A logical value to specify whether code files should be automatically
attached to the job. If true, the batch script or function is analyzed and the code files
that it depends on are automatically transferred to the worker. The default is true.

• 'CurrentFolder' — A string indicating in what folder the script executes. There is no
guarantee that this folder exists on the worker. The default value for this property is the
cwd of MATLAB when the batch command is executed. If the string for this argument is
'.', there is no change in folder before batch execution.

• 'CaptureDiary' — A logical flag to indicate that the toolbox should collect the diary from
the function call. See the diary function for information about the collected data. The
default is true.

• 'Pool' — An integer specifying the number of workers to make into a parallel pool for
the job in addition to the worker running the batch job itself. The script or function uses
this pool for execution of statements such as parfor and spmd that are inside the batch
code. Because the pool requires N workers in addition to the worker running the batch,
there must be at least N+1 workers available on the cluster. You do not need a parallel
pool already running to execute batch; and the new pool that batch creates is not
related to a pool you might already have open. (See Run a Batch Parallel Loop.) The

http://www.mathworks.com/help/distcomp/diary.html
http://www.mathworks.com/help/distcomp/parfor.html
http://www.mathworks.com/help/distcomp/spmd.html
http://www.mathworks.com/help/distcomp/introduction-to-parallel-solutions.html#brjw1fx-3

default value is 0, which causes the script or function to run on only a single worker
without a parallel pool.

Examples

Run a batch script on a worker, without using a parallel pool:

 j = batch('script1');

Run a batch script that requires two additional files for execution:

j = batch('myScript','AttachedFiles',{'mscr1.m','mscr2.m'});
wait(j);
load(j);

Run a batch pool job on a remote cluster, using eight workers for the parallel pool in addition to
the worker running the batch script. Capture the diary, and load the results of the job into the
workspace. This job requires a total of nine workers:

 j = batch('script1','Pool',8,'CaptureDiary',true);
 wait(j); % Wait for the job to finish
 diary(j) % Display the diary
 load(j) % Load job workspace data into client workspace

Run a batch pool job on a local worker, which employs two other local workers for the pool.
Note, this requires a total of three workers in addition to the client, all on the local machine:

 j = batch('script1','Profile','local','Pool',2);

Clean up a batch job's data after you are finished with it:

delete(j)

Run a batch function on a cluster that generates a 10-by-10 random matrix:

c = parcluster();
j = batch(c,@rand,1,{10,10});

wait(j) % Wait for the job to finish
diary(j) % Display the diary

r = fetchOutputs(j); % Get results into a cell array
r{1} % Display result

Tips

To see your batch job's status or to track its progress, use the Job Monitor, as described in Job
Monitor. You can also use the Job Monitor to retrieve a job object for a batch job that was
created in a different session, or for a batch job that was created without returning a job object
from the batch call.

As a matter of good programming practice, when you no longer need it, you should delete the
job created by the batch function so that it does not continue to consume cluster storage
resources.

javascript:void(0);
http://www.mathworks.com/help/distcomp/job-monitor.html
http://www.mathworks.com/help/distcomp/job-monitor.html

	Batch
	Syntax
	Arguments
	Description
	Examples
	Tips

